How does cellular senescence prevent cancer




















Israel, and K. Nickoloff, V. Chaturvedi, P. Bacon, J. Qin, M. Denning, and M. Tang, G. Gordon, B. Nickoloff, and K. Sharpless, N. Bardeesy, K. Lee et al. Vogelstein and K. Hanahan and R. Bryan, A. Englezou, J. Gupta, S. Bacchetti, and R. Muntoni and R. R—R, Hahn, C. Counter, A. Lundberg, R. Beijersbergen, M. Brooks, and R. Artandi, S. Alson, M. Tietze et al. Canela, J. Flores, and M. Bednarek, Y.

Chu, T. Slaga, and C. Blasco, H. Lee, M. Hande et al. Khoo, D. Carrasco, M. Bosenberg, J. Paik, and R. Greenberg, L. Chin, A. Femino et al. Samper, J. Rudolph, M. Millard, M. Bosenberg, and R. Wong, R. Maser, R. Bachoo et al. Qi, M. Strong, B. Karim, D.

Huso, and C. Karim, M. Armanios, D. View at: Google Scholar X. Guo, Y. Deng, Y. Lin et al. Lechel, H. Holstege, Y. Begus et al. Goytisolo, J. View at: Google Scholar K. Rudolph, S. Chang, H. Farazi, J. Glickman, J. Horner, and R. Feldser and C. Cosme-Blanco, M. Shen, A. Lazar et al. Braig, S. Lee, C. Loddenkemper et al.

Sarkisian, B. Keister, D. Stairs, R. Boxer, S. Moody, and L. Morton, P. Timpson, S. Karim et al. Denchi, C. Attwooll, D. Pasini, and K. Chen, L. Trotman, D. Shaffer et al. Dankort, E. Filenova, M. Collado, M.

Serrano, K. Jones, and M. Ha, T. Lchikawa, M. Anver et al. Dhomen, J. Reis-Filho, S. Goel, N. Ibrahim, G. Jiang et al. Majumder, C. Grisanzio, F. O'Connell et al. Xu, Q. Yu, R. Subrahmanyam, M. Difilippantonio, T. Ried, and J. Young, S. Schisio, Y. Minamishima et al.

Michaloglou, L. Vredeveld, M. Soengas et al. Courtois-Cox, S. Genther Williams, E. Reczek et al. Gray-Schopfer, S. Cheong, H. Chong et al. Bartkova, N. Rezaei, M. Liontos et al. Sun, N. Yoshizuka, L. New et al. Shay and I. Schmitt, J.

Fridman, M. Yang et al. Wright, M. Piatyszek, W. Rainey, W. Byrd, and J. Ulaner, J. Hu, T. Vu, L. Giudice, and A. Shay and W. Damm, U. Hemmann, P. Garin-Chesa et al. Kim, J. Kim, G. Lee, S. Kim, and I. Preto, S. Singhrao, M. Haughton, D. Kipling, D. Wynford-Thomas, and C. Riou, L. Guittat, P. Mailliet et al. Shammas, H. Koley, D. Beer, C. Li, R. Goyal, and N. Djojosubroto, A. Chin, N. Go et al. Brunsvig, S. Aamdal, M. Gjertsen et al.

Deng, G. Jayachandran, G. Wu, K. Xu, J. Roth, and L. Hochreiter, H. Xiao, E. Goldblatt et al. An, R. Schnur, L. Neckers, and M. Dasgupta and J. Selivanova, L. Ryabchenko, E. Jansson, V. Iotsova, and K. Foster, H.

Coffey, M. Morin, and F. Buller, I. Runnebaum, B. Karlan et al. Butz, C. Denk, A. Ullmann, M. Scheffner, and F. Seth, U. Brinkmann, G. Schwartz et al.

Quist, S. Wang-Gohrke, T. Kreienberg, and I. Hietanen, S. Lain, E. Krausz, C. Blattner, and D. Maehama, A. Patzelt, M. Lengert et al. Nemunaitis, S. Swisher, T. Timmons et al. Martins, L. Brown-Swigart, and G. Ventura, D. Kirsch, M. McLaughlin et al. Xue, L. Zender, C. Miething et al. Wu, J. Yetil et al. Soucek, J. Whitfield, C. Martins et al. Chang, E. Broude, M. Dokmanovic et al. Chang, Y. Xuan, E. Elmore, C. Rehder, X. Di et al. Wang, S. Wong, J. Pan et al. Okorokov, L.

Jardine, J. Cummings, and S. Blasco, and M. Paradis, N. Youssef, D. Going, R. Stuart, M. Downie, A. Fletcher-Monaghan, and W. Wiemann, A. Satyanarayana, M. Tsahuridu et al. Herbig, M. Ferreira, L. Condel, D. Carey, and J. Mishima, J.

Handa, A. Aotaki-Keen, G. Lutty, L. Morse, and L. Jeyapalan, M. Ferreira, J. Sedivy, and U. Price, J. Waters, C.

Darrah et al. Fenton, S. Barker, D. Kurz, and J. Matthews, I. Gorenne, S. Scott et al. Vasile, Y. Tomita, L. Brown, O. Kocher, and H. Minamino and I. Flanary, N. Sammons, C. Nguyen, D. Walker, and W. Tsuji, K. Aoshiba, and A. Welker, K. Paasch et al. Schneider and Y. Rheinwald and H. Martin, C. Sprague, and C. Bruce, S. Deamond, and P. Cristofalo, R. Allen, R.

Pignolo, B. Martin, and J. Murano, H. Benes et al. Nakamura, N. Izumiyama-Shimomura, M. Sawabe et al. Allsopp, H. Vaziri, C. Patterson et al. Cawthon, K. Smith, E. O'Brien, A. Sivatchenko, and R. Hastie, M. Dempster, M. Dunlop, A. Thompson, D. Green, and R. Sugimoto, R. Yamashita, and M. Melk, V. Ramassar, L. Helms et al. Takubo, K. Izumiyama et al. B—B, Aikata, H. Takaishi, Y. Kawakami et al. Baerlocher, I.

Vulto, G. Canela, E. Vera, P. Gross, O. Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase Immunity 36, — Han, C.

Han, L. Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Harajly, M. Harley, C. Telomeres shorten during ageing of human fibroblasts. Hayes, T. Cancer Cell 29, 75— Hayflick, L. The limited in vitro lifetime of human diploid cell strains. The serial cultivation of human diploid cell strains. Henriques, A. Expression of tumor-related Rac1b antagonizes B-Raf-induced senescence in colorectal cells.

Herbig, U. Cellular senescence in aging primates. Cell 14, — Hotta, K. Gefitinib induces premature senescence in non-small cell lung cancer cells with or without EGFR gene mutation. Huck, J. MLN, an inhibitor of Aurora A kinase, induces senescence in human tumor cells both in vitro and in vivo. MCR 8, — Iannello, A. Ignacio, R. CXCR2 is a negative regulator of p21 in pdependent and independent manner via Akt-mediated Mdm2 in ovarian cancer.

Kalathur, M. Kang, C. Kang, T. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Karlseder, J. Katakura, Y. Transforming growth factor beta triggers two independent-senescence programs in cancer cells.

Khosravi-Far, R. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Kim, S. Ablation of galectin-3 induces p27 KIP1 -dependent premature senescence without oncogenic stress. Kim, Y. Senescent tumor cells lead the collective invasion in thyroid cancer. Kolquist, K. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues.

Korkaya, H. Cell 47, — Kosar, M. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- And insult-dependent manner, and follow expression of p16 ink4a.

Cell Cycle Georgetown, Tex. Krtolica, A. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Kuilman, T. The essence of senescence. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network.

Kurz, D. Senescence-associated beta -galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. Cell Sci. Laberge, R. Lasry, A. Senescence-associated inflammatory responses: aging and cancer perspectives.

Trends Immunol. Lecot, P. Context-dependent effects of cellular senescence in cancer development. Cancer , — Lee, A.

Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. Lee, B. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, — Lee, J. PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Diff. Prevention of premature senescence requires JNK regulation of Bcl-2 and reactive oxygen species. Oncogene 29, — Levy, M. Telomere end-replication problem and cell aging.

Li, F. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Li, L. BMC Cancer Lim, N. Cdc6 as a novel target in cancer: oncogenic potential, senescence and subcellular localisation. Lin, A. Liontos, M. Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior.

Liu, J. In Vitro Int. Liu, S. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Loaiza, N. Cellular senescence and tumor promotion: Is aging the key? Lou, Z. Lowe, S.

Intrinsic tumour suppression. Lujambio, A. Non-cell-autonomous tumor suppression by p Macha, M. Maicher, A. Deregulated telomere transcription causes replication-dependent telomere shortening and promotes cellular senescence. Nucleic Acids Res. Malaquin, N. Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Marino Gammazza, A. Martins, I. Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death.

Medema, J. Escape from senescence boosts tumour growth. Nature , 37— Meng, Y. Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine.

Ther, J. Gene Ther. Meyne, J. Michaloglou, C. BRAFEassociated senescence-like cell cycle arrest of human naevi. Milanovic, M. Senescence-associated reprogramming promotes cancer stemness.

Nature , 96— Mo, L. Mongiardi, M. Oncogene 38, — Morelli, M. Oncotarget 8, — Mosteiro, L. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Aging Cell e Mudbhary, R. Cancer Cell 25, — Nacarelli, T. NAMPT inhibition suppresses cancer stem-like cells associated with therapy-induced senescence in ovarian cancer.

Nakamura, A. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenetics Chromatin Nardella, C. Narita, M. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation.

Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Nekulova, M. The role of p63 in cancer, stem cells and cancer stem cells. Noguchi, S. Nowicki, T. Ohashi, S. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Ohtani, N. JMI 51, — Orjalo, A. Osman, A. Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence.

Oyama, K. AKT induces senescence in primary esophageal epithelial cells but is permissive for differentiation as revealed in organotypic culture. Oncogene 26, — Park, G. Gliotoxin enhances autophagic cell death via the DAPK1-TAp63 signaling pathway in paclitaxel-resistant ovarian cancer cells. Drugs Parrinello, S. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts.

Passos, J. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Patten, D. Jumonji domain-containing 6 JMJD6 identified as a potential therapeutic target in ovarian cancer. Peeper, D. Ageing: old cells under attack. Perez-Campo, F. MOZ-mediated repression of p16 INK 4 a is critical for the self-renewal of neural and hematopoietic stem cells. Stem Cells Dayton, Ohio 32, — Perez-Mancera, P.

Inside and out: the activities of senescence in cancer. Cancer 14, — Pernicova, Z. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia New York, N. Pomerantz, J. Cell 92, — Pribluda, A. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24, — Qian, Y. DEC1, a basic helix-loop-helix transcription factor and a novel target gene of the p53 family, mediates pdependent premature senescence.

Quelle, D. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, — Rao, S.

SASP: tumor suppressor or promoter? Trends Cancer 2, — Ren, X. Tumor-suppressive microRNAa induces growth arrest and senescence by targeting E2F3 in human lung cancer cells. Revandkar, A. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering pdriven cellular senescence.

Ritschka, B. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Robinson, A. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol. Robles, S. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, — Rodier, F. Four faces of cellular senescence. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion.

Roediger, J. Histone deacetylase inhibitors induce cellular senescence in neuroblastoma and prostate cancer. Medizinische Genetik Romagosa, C.

Oncogene 30, — Rufini, A. Senescence and aging: the critical roles of p Oncogene 32, — Ruhland, M. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Ruscetti, M. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Sai, X. Downregulation of PTEN mediates bleomycin-induced premature senescence in lung cancer cells by suppressing autophagy.

Schleich, K. H3K9me3-mediated epigenetic regulation of senescence in mice predicts outcome of lymphoma patients. Sedelnikova, O. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Seo, S. Cell Proliferation e Serrano, M. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, — Sharpless, N.

Forging a signature of in vivo senescence. Cancer 15, — Sheikh, B. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Cancer 3, — Trends Biochem. Song, J. Soucek, L. Modelling Myc inhibition as a cancer therapy. Stein, G. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts.

Stewart, S. Erosion of the telomeric single-strand overhang at replicative senescence. Storer, M. XSenescence is a developmental mechanism that contributes to embryonic growth and patterning.

Cell , X—X Sun, C. Sun, H. Theranostics 10, — Sun, P. Clearly, the existence of senescent stem cells is central to the proposed hypothesis, and although there is preliminary evidence for this assertion it has yet to be proven in vivo. An experimental strategy involving double labeling of stem cells with a nucleotide label is described that can address this question. Abstract It is widely believed that cellular senescence is a tumor suppressor mechanism; however, it has not been understood why it is advantageous for organisms to retain mutant cells is a postmitotic state rather than simply eliminating them by apoptosis.



0コメント

  • 1000 / 1000